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FRESNEL COEFFICIENTS FOR A PHASE CONJUGATOR
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ABSTRACT

Optical phase conjugation via four-wave mixing is examined in detail. The

Fresnel coefficients for reflection and transmission of a plane wave irradiating

the surface of the phase conjugator are calculated. It appears that for normal

incidence and a weak nonlinear interaction the device produces the phase-

conjugated beam with respect to the incoming beam. For finite angles of

incidence or stronger nonlinearities in the crystal, the generated wave deviates

from the ideal conjugated wave, and also a second reflected wave appears. It is

pointed out how this could explain certain controversies regarding atomic

lifetimes near the surface of a phase conjugator.
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I. INTRODUCTION

After the first demonstrationsl "4 of the feasibility of generating phase-

conjugated electromagnetic waves (with respect to a reference wave), this

technique has found important applications in optical engineering, and especially

in the design of devices for the production of high-quality laser beams. If a

light ray is reflected by phase-conjugating mirror, then its wave front is

reversed. This implies that a diverging beam emanates as converging rather than

as diverging, which would be the situation for an ordinary mirror. In this

fashion, a distorted wave front can be corrected, after reflection by a phase

conjugator (PC), by letting it pass through the same device which built up the

distortion.
5 -7

Since wave front reversal by PC's appears to work so well, one presently

anticipates more sophisticated applications. Especially lifetime modifications

of atoms, which are due to the fact that the atom radiates its fluorescence (in

spontaneous decay) in the vicinity of a PC, are expected to be dramatic.
8

Emitted dipole radiation diverges from its source, and a subsequent reflection by

a PC can focus the wave exactly back on the atom. Stimulated absorption of

photons can then conceivably lead to (effective) infinite lifetimes of excited

atomic states. This is turn leads to a reduction of the natural linewidth, which

might have consequences for frequency standards. It was predicted9 that the

linewidth vanishes identically, if the reflectivity of the mirror equals unity,

and this property would be independent of the distance between the atom and the

PC.

Although wave front reversal has been proven to be possible in general,

there is a little more to it if one wants to extend the horizon of its

applications. Let us represent the electric field by its Fourier integral
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E(r,t) =- dw e- i Ur,w)

From E(r,t)* - E(r,t) we obtain the relation

(r,-)* - (r,-w) . (1.2)

On the other hand, the phase-conjugated replica of E(r,t) follows from the

substitution 1(r,w) -+ 2(r,w)* in Eq. (1.1), and combination with Eq. (1.2)

then yields

1 dw e l(r,w)* = E(r,-t) . (1.3)

Hence, perfect phase conjugation is identical to time reversal, and it is easy to

argue that it is impossible to construct a device which can accomplish that.

Time reversal (looking into the future) violates causality. For the

example of fluorescence, this would imply that at the time the photon is emitted

the atom already knows that the phase-conjugated wave will be refelcted back. If

the distance between atom and mirror, divided by the speed of light, is much

larger than the atomic lifetime, then the presence of the PC should not affect

the optical properties of the atom anymore, according to the principles of

special relativity. Therefore, more profound understanding of phase conjugation

requires a time (or frequency) resolution in the description, and in such a way

10-18[]that causality is preserved. Besides that, the literature on reflection by

PC's is largely restricted to the case of normal incidence of the probe field.

Dipole radiation, for instance, is a spherical wave, and consequently it is

COPY
.NSPECr...
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imperative to take a non-zero parallel component of the incident wave vector into

consideration.

II. CONSTITUTIVE EQUATION

If radiation is scattered by a vacuum-material interface, then the

reflected field often acqul..zs a phase-conjugated component.1 9  Since we are

interested in the basic possibilities and limitations of producing phase-

conjugated radiation, we consider the most simple configuration, which is

experimentally realizable2 0 and has all the desired features. As active medium

we choose a crystal which is transparent (unit dielectric constant) for the

frequrfncy range under consideration, but has a significant third-order

susceptibility X (3)(w). Two strong counterpropagating and linearly-polarized

laser beams with frequency ii > 0 are assumed to excite the nonlinear interaction.

A relatively weak incident (probe) wave then induces a polarization P(r,t) in

the crystal. Corresponding oscillating charges then emit radiation, which gives

rise to a reflected, phase-conjugated wave. From the theory of four-wave

mixing2 1'2 2 we know that the (Fourier transform of the) polarization is then

related to the electric field by

P(r,w) - E0WKGw)*Vrw-2G) , w > 0 . (2.1)

Here, I represent the electric field at r in the crystal, but it does not include

the two pump fields. The function f(w) represents the nonlinear material and

will further remain unspecified. This quantity has the same status as the

frequency-dependent first-order susceptibility X1W for dielectrics. In the

present situation, the w-dependence of f equals the w-dependence of X shifted
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over the 'setting frequency' Z of the phase conjugator. Furthermore, f is

proportional to the products of the amplitudes of the two pump beams.

From P(r,t)* - P(r,t) we find f(r,w)* - P(r,-w), and with Eq. (1.2) we then

obtain

P(r,w) - Eo0(I+5)A(r,2i+w) , w < 0 , (2.2)

the polarization for negative frequencies. Equations (2.1) and (2.2) give P(r,w)

for every w, and together they will be considered as the constitutive relation

for a phase conjugator.

Because the frequency dependence of f(w) represents the frequency

dependence of X (3)(M around the setting -W, the function f(w) should be strongly

peaked around w - 0. From Eq. (2.2) we then see that P(r,w) can only be nonzero

for frequencies w - --. Its value is proportional to k, evaluated at the

frequency 2Z + w - iL. In other words, Eq. (2.2) expresses that P around -i is

determined by A around -w, and is zero if w is sufficiently far away from -w.

With this in mind, the Fourier inverse of Eq. (2.2) is readily found to be

P(-)(r,t) - oeft f(T) ei (t )E(+)(r,t-T) (2.3)
0 0

where (-) and (+) indicate the negative and positive frequency parts,

respectively. The function f(T) is related to f(w) by

f(w) "fdT eei f(T) , (2.4)
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which is a Fourier integral if we set f( <O) - 0. Equation (2.3) expresses that

the polarization at time t is determined by the electric field in the past only.

Therefore, the mechanism of phase conjugation is causal.

III. COUPLED WAVE EQUATIONS

In terms of a polarization, the Fourier-transformed Maxwell equations read

V.(C 0(r,w) + 0()) , (3.1)

7.9(r,w) = 0 (3.2)

V x 1(r,w) - iwl(r,w) - 0 , (3.3)

)o'IV x A(r,w) + iw(c o(rw) + P(r,w)) - 0 (3.4)

which should be obeyed for every w seperately. Outside the phase conjugator we

have P - 0, inside we set P equal to expression (2.1) or (2.2), depending on the

sign of w, and furthermore, Eqs. (3.1)-(3.4) imply the boundary conditions at the

interface in the usual way.

The polarization P at frequency w is expressed in A at a different

frequency, and therefore Eqs. (3.1) and (3.4) couple sets of Maxwell equations

for different frequencies. If we take a fixed frequency WI -
W, then the

polarization P(r,wl) is brought about by the electric field at w 1 2Z < 0,

according to Eq. (2.1). On the other hand, the polarization at - 2i is

induced by 1(r,w1 ), as follows from Eq. (2.2). Therefore, Maxwell's equations
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couple positive and negative frequencies two by two. If we take w- Z > 0, then

this frequency couples with 2 ~ < 0, and their relation is

W1 - W = w2 + . (3.5)

For the fields inside the PC we eliminate with Eq. (3.3),

A(r,w) = -iw'1V x (r,w) , for w w,w 2  (3.6)

Then Eq. (3.2) is automatically satisfied, and Maxwell's equations are equivalent

to

-.1(r,w) 0 , for w - W1,W2  , (3.7)

V 2 (r, ) + (W1/c) 2 ((Ewi) + f(z-w 1)*I(r,w 2 )) - 0, (3.8)

V21(r,w 2) + (w21c) (M(,w2) + (+w2)(Ew)) - 0 (3.9)

Equation (3.7) expresses that the electric field .s transverse, and Eqs. (3.8)

and (3.9) show that the fields at w and w2 obey a set of coupled wave equations.

IV. PLANE WAVES

Solutions of the set (3.7)-(3.9) are easily found. If we try

ik .r

a (rmw I -ae , (4.1)
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ik "r

(r,a2) a -a - (4.2)

then Eqs. (3.7)-(3.9) become

k . =2a 0 ,(4.3)-a -a

k 2  (W /0)2 (1+na (;-Wl (4.4)
a a

k2  (W (/c)2(1+n- M(i 2)a (4.5)

2 2 a 2

Equations (4.4) and (4.5) both express the (complex-valued) wave number in the

ratio of amplitudes na of the wi- and w2 -waves. Equating the right-hand sides

gives a quadratic equation for na' which admits two acceptable solutions. For

reasons which will become clear in due course, we choose

(1-(WII/ 2)
2)(1-D) (4.6)

in terms of the parameter

D 22 (4.7)

1/w2)
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Equations (4.6) and (4.7) express na in the given function 1, and with Eq. (4.4)

2
we find ka. For a given frequency dependence of I(N), Eq. (4.4) is then the

dispersion relation for the phase conjugator.

Instead of retaining two possible values for na s we seek a second solution

of the form

lb(,wl) - bFbe , (4.8)

ik *r
=b(r,w2) m 4e ,b - (4.9)

and along the same lines we find

k o(4.10)

k2 (W2/c) 2 (i+Tf(Fa+W 4.1b  2 b

2 ( /-c)2(1+r)I ( .41
kb 1 c)*) • (4.12)

Again, there are two solutions for 'b' but now we taken-I

((W1/w2)2-1)(1-D)
-b 2f( i w2) "(4.13)

Substitution of nb into Eq. (4.11) then gives a second branch of the dispersion

relation. It is easy to check that the b-solution is precisely the discarded a-

solution.



10

In the limit ! - 0, corresponding to a switch-off of the interaction, we

find

0 , k2  (W/c)2  (4.14)

and hence the w2-wave disappears. The dispersion relation for the w -wave is the

same as for a wave in a vacuum. This implies that the a-solution is essentially

a w 1-wave, but due to the nonlinear interaction I * 0 there is a mixing with the

W2 -wave, which is excited with a relative amplitude n a. The second, suppressed

solution for na would give na - - for f - 0. Since the amplitude of the w2 -wave

must remain finite, this would imply E a - 0, n Ea finite, indicating that the w,-

wave disappears in comparison with the w2 -wave. The property na -+ - for 40 is

inconvenient. Therefore we have introduced the second solution with the

normalization as given by Eqs. (4.8) and (4.9). For - 0 we now obtain

2 ( 22
nb - 0 , k b - ,(W2 c) (4.15)

showing that the b-solution is essentially an w2-wave, modified by the nonlinear

interaction.

From Eqs. (4.1) and (4.2) we notice that the w - and w2-waves seem to have

the same wave vector and polarization, and that their ratio of amplitudes equals

na. However, due to the fact that w > 0 and w2 < 0, the waves are

counterpropagating. In the time domain, the w2-wave has a factor

exp(ik r - iw2t) + c.c., which represents a wave with wave vector -ka . Finally,

we mention two interesting relations between the a- and b-solutions. For the

amplitude factors we have
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ria (2) 2 f(+W2 )

- -(i. )* , (4.16)

and the wave numbers are related according to

k2 + k 2 + (W2/c)2 (4.17)
a kb 1wc (2/c

independent of the interaction strength f.

V. WAVES AT AN INTERFACE

Consider position space to be diviced in vacuum (z>O) and a PC (z < 0),

separated by a plane boundary (z = 0). Incident upon this interface, and from

the vacuum side, is a plane monochromatic wave with frequency wI > 0,

ik-r
!i(r , )e- - , 

(5.1)

with amplitude and polarization E, and wave vector k supposed to be given. From

Maxwell's equations (3.1)-(3.4) we find the constraints

k2 = (W1 /c)2  , k-E = 0 . (5.2)

If we write k -k1 + k, where 11 and I refer to the plant z 0 0, then the

* z-component of k is

,z %Tk7 - (5.3)
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The question is what the reflected and transmitted waves are. In this section we

shall establish which waves occur, and shall determine their wave vectors. In

the next section we shall then evaluate their amplitudes (including phase and

polarization), e.g., the Fresnel coefficients.

Waves in z > 0 and in z < 0 must match at z - 0 according to the boundary

conditions. Every plane wave contains a factor exp(ik. r), which equals

exp(ikM- 1 -r) at z - 0. Boundary conditions can only be satisfied if these

exponentials cancel, implying that the parallel component of every wave vector

must be identical, e.g.,

=k (5.4)

for any wave vector k in z > 0 and z < 0. Then, both in z > 0 and z < 0, the

a-value of k2 follows from the dispersion relation, given the frequency, which in

turn gives for the perpendicular component the two possibilities 
kaz ± /(k2 -

,Z

k ). The sign in front'of the square root determines whether the wave travels in

the +z- or -z-direction. Since the incident wave has frequency w1, which only

couples to w2, these considerations limit the number of possible plane waves to

four in z > 0 and eight in z < 0.

Let us first look at the region z > 0. Besides the incident wave at

frequency wi , the only other possibility for waves at w is the common reflected

wave with

k =k > 0 . (5.5)
r,z z
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Therefore, the most general expression for the electric field at frequency w1 in

z > 0 reads

ik-r ik *r
=1 e-- +E -r- , (5.6)

with only E r yet to be determined. For the field at w2, we again have two

possible waves, which only differ in their sign of the z-component of the wave

vector. Of course, it is tacitly assumed that the incident wave is the only

external field, which implies that an w2-wave in z > 0 can only travel in the +z-

direction. We shall refer to this wave as the phase-conjugated wave, and it is

represented by

ipc' r
2(rw2) = e (5.7)

The fact that a wave with w2 < 0 propagates in a direction opposite to its wave

vector then gives

kpcz = - /((w2/c)
2 - k ) . (5.8)

If the incident field is exactly on resonance with the PC, we then have w1 =,

-2 
= "w and kpcz = k z . Combining this with Eq. (5.4) shows that in this case

kp = k, and hence the PC-wave and the incident wave counterpropagate exactly.

Therefore, the field at w in z > 0 is the phase-conjugated replica of the

incident field (possibly apart from polarization and amplitude), if - W.

Furthermore, we notice that for -w2 * Wit kPC'z can be imaginary, corresponding

to an evanescent wave.

. =am| mllmmumumi I ml llmllm mmmm~ gl g g mal~ln
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In the PC we have the independent a- and b-solutions from the previous

section. Both solutions can occur with a + or - sign in the definition of their

z-component of the wave vector. This amounts to four different solutions, and

every one of them consists of two waves (at w1 and w2 ). For the corresponding

problem with a dielectric, we know tat we can discard the wave which propagates

in the +z-direction, but for a PC it. is not obvious which waves are the causal

waves. This results from the fact that every solution consists of two

counterpropagating waves. The only clue at this stage is that in the limit

I- O, the incident field must propagate undisturbed through the crystal, and

e-rery other component must vanish. This corresponds to the a-solution with

ka,z -- (k -k) . (5.9)

Whether the other three solutions are excited by the incident field or not seems

to be impossible to find out a priori. We have to consider the full solution for

z < 0, calculate all amplitudes by matching boundary values, and then require

that all fields disappear in the limit E * 0. In carrying out this procedure, we

have found that only the b-solution with

kb,z- (K - k1) (5.10)

is excited by the incident wave. This field corresponds to an w2-1ike wave,

which propagates in the -z-direction. For the field in z < 0 we can now write

(, ) aikr ik'r

" rwl ~ea + rbF-be " , (5.11)
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ikr' ikr'

2) - n -a-e  + be -b (5.12)

and only Ea and-Eb remain to be determined.

VI. FRESNEL COEFFICIENTS

The fields from the previous section must be matched across z = 0, with the

conditions that ( 0A + )j, k and A are continuous, both for w1 and w2.

Furthermore, we have restrictions k *E - 0 for every wave. This procedure fixes

the amplitudes Erp RPC , a and E b in terms of E. Notice that two components of

the field for z < 0 acquire an additional factor of nb or na in their amplitudes,

according to Eqs. (5.11) and (5.12).

As usual, it is advantageous to distinguish between an s (2 surface) and a

p (= plane) polarized incident wave. Then all other waves are s- or p-polarized.

In Fig. 1 we have summarized the polarization convention which will be adopted

here. All unit vectors are normalized as e *e - 1, and their directions follow

from e -k - 0 in combination with the convention from Fig. 1. Since the k 's

are not necessarily real, the unit vectors for p-polarization will be complex, in

general. Then the Fresnel coefficients for s-waves are defined in the notation

E - , (6.1)

E r - R se r,s E PC e PsEePC,s (6.2)

-a - Ta,s -aa,s '-Eb - Tb,sE%,s (6.3)
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and for an incident p-wave we replace the subscripts s by p. We obtain the

result

R - L ((kz'k )(kPC'bz) + na b(k akPC,z)(kz-kb)) , (6.4)5 a P~~ Zn a z z b,z)

Ps - n 2nakz(k a'z-k ) * (6.5)

T I C,z b,z) |

as -T 2kz(kPczk ) (6.6)
S

Tbas - 1 2k (kzk ) ,(6.7)

k 2  kb
R -1k(k a k)(kp - _kb
p P zk 2 ~ Czkpc2 b

k 2
+T k1 (k k 2 )(k kb (6.8)

-k

2a aba,z kpc,z kz k 2 b,z)

PC Pk2 k2

1 a kb a

P p 2 akz -k a,z -; " kb,z (6.9)

Tap mp 2 kz "(kpcz 2  kb~z) ,(6.10)
p PC

pkk

ap zp az k ,z k 2c ,z.1
kp2

T p L-2rj !(k -k ( .11
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where we have introduced the abbreviations

Z8  (kz + ka,z )(kpcz - kb,z)

+ n Tb(ka,z - k pcz)(kz + kb,z) (6.12)

k2  2

Z -(k -1+ k )(kkp z +2 a,z PCz k kb,z)kk

k2  2

+ T*afb(kaz - kp a)(k -+ k (6.13)
a ~ Czk 2 Zk .j,z

PC

With the explicit expressions for the z-components of the various wave vectors

from the preceding section, Eqs. (6.4)-(6.13) determine the Presnel coefficients

in terms of IM-and kg2 (or f(w) and the angle of incidence).

VII. PHASE CONJUGATION

The incident wave gives rise to an (ordinary) reflected wave, a reflected

phase-conjugated wave and four transmitted waves. It is easy to check from the

formulas above that in the limit I -, 0 both T and T approach unity, anda,s a,p

that the other Fresnel coefficients vanish. In this limit the PC is transparent,

as it should be. For f 0 0 the PC-wave appears, but also the r-wave (not to be

confused with reflection at a dielectric; this r-wave is merely a result of the

four-wave mixing). The presence of the r-wave already indicates that this device

cannot be a perfect phase conjugator, even if the PC-wave would be the phase

conjugated signal with respect to the incident wave.

I



18

Perfect phase conjugation would be achieved if R = R = 0, P = P = 1,s p s p

the transmission coefficients arbitrary, and w2 m -W1. With our expressions for

the wave vectors and the Fresnel coefficients it is easy to investigate the

quality of phase conjugation in a particular situat.in. Let us first assume that

the incident field is on resonance with the PC (w1 = Zi), which can always be

managed by tuning the pump fields. Then we write

f(0) - y ei# y > 0, 0 real , (7.1)

so that y measures the strength of the nonlinear interaction. From Eqs. (4.6),

(4.7) and (4.13) we then find

a m-6 ei# nb = 6 e , (7.2)

where

1 if W < Z

6- (7.3)

1 if W > i

First, we observe that Inal - InbI 1, and in view of Eqs. (4.1) and (4.2) or

Eqs. (4.8) and (4.9), this means that the w1" and w2 -waves have the same

amplitude, independent of the interaction strength y. Second, we notice that na

and nb are discontinous if we pass w over the resonance i5, and third, Eq. (7.2)

might seem to be in conflict with Eqs. (4.14) and (4.15). From Eq. (4.7),

however, we see that close resonance in fact means

- I -n
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W - Iw2 << Y (7.4)

W 1

or, the relative detuning must be much smaller than the coupling strength.

Conversely, the limit I * 0 should read as y >> 1 - Iw2/wll.

As a second condition we take

y< 1 , (7.5)

and subsequently we choose the angle of incidence to be zero (k - 0). Then the

Fresnel coefficients simplify considerably, and wc obtain

Rs = 1 , (7.6)

P = - 6 e1* (7.7)

T l 1 , (7.8)

T - 1 e <<l . (7.9)

Equation (7.8) expresses that the amplitude of the incident beam is not affected

by the crystal (up to order y), as could be expected from the fact that for Y + 0

the PC becomes transparent. Furthermore, the ordinary reflected wave and the b-

waves disappear for y small. Most remarkable is that IPsI - 1 in this limit,

which implies perfect phase conjugation for a monochromatic wave on resonance and

of perpendicular incidence. This feature, which is present for an arbitrarily
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small nonlinear interaction strength y, justifies the name PC for this device.

Figure 2 illustrates the dependence of IPsl and IP I on the angle of incidence.

VIII. CONCLUSIONS

In order to investigate quantitatively the possibilities and limitations of

optical phase conjugation, we have worked out the realistic case where the

conjugated wave is generated by four-wave mixing in a nonlinear medium. Since

every electromagnetic wave, which is incident on the PC, can be decomposed into

plane waves, it is sufficient to evaluate the response of the PC to an external

plane wave. We found that a PC reflects an ordinary and a phase-conjugated wave

back into the vacuum, and that the transmitted wavi has four components for a

half-infinite medium. The wave vectors and Fresnel coefficients were obtained in

terms of the incident wave vector and frequency, and the function f(w), which

represents the PC. Reflection and transmission angles for the rays follow from

the wave vectors, and the intensities and polarizations are determined by the

Fresnel coefficients.

It was shown that the device indeed operates as a PC if the angle of

incidence is zero, the wave is on resonance with the PC, and the nonlinear

interaction is weak. Conversely, for every other situation the PC conjugates the

wave only partially, and in addition emits an ordinary reflected wave. In

spectroscopic applications, where spherical waves irradiate the PC, many plane-

wave components have a nonzero angle of incidence for which the PC is nonideal.

Because it is the interference of all reflected and incident waves, which

determines, for instance, the lifetime of an atom near the surface, it is

inevitable that these imperfections must be taken into account. Moreover, it was

pointed out in the Introduction that a perfect phase-conjugating medium should

not exist, due to causality requirements.
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FIGURE CAPTIONS

Fig. 1. Polarization convention for the various waves. All s-polarization

vectors, perpendicular to the plane of incidence, point in the same direction.

For p-polarized waves we choose the unit vectors such that their z-components are

negative in the limit f -* 0 (for f * 0, the z-components might be complex). The

arrows with the letters next to them indicate the wave vectors. Their parallel

components are all equal to kgI and the figure shows the sign of their z-

component in the limit - 0.

FiR. 2. Reflectivity coefficients IPs I (curve a) and IPp I (curve b) for the

phase-conjugated wave as a function of the cosine of the angle of incidence. For

angles between 0* and 60* we have s IPp I 1, which corresponds to perfect

phase conjugation. For larger angles, however, the operation of the device is

far from perfect, and for parallel incidence the phase-conjugated wave disappears

completely. The peaks in the two curves reflect an amplification of the

intensity of the phase-conjugated wave with respect to the intensity of the

incident wave. The parameters are w w. y U 0.1 and * - 0.
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